|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 314, Pages 221–246
(Mi znsl758)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Automorphic $L$-functions in the weight aspect
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $S_k(\Gamma)$ be the space of holomorphic $\Gamma$-cusp forms $f(z)$ of even weight $k\geqslant12$ for $\Gamma=SL(2,\mathbb Z)$, and let $S_k(\Gamma)^+$ be the set of all Hecke eigenforms from this space with the first Fourier coefficient $a_f(1)=1$. For $f\in S_k(\Gamma)+$, consider the Hecke $L$-function $L(s,f)$. Let
$$
S(k\leqslant K)=\bigcup_{\substack{12\leqslant k\leqslant K\\k\text{ even}}}S_k(\Gamma)^+.
$$
It is proved that for large $K$,
$$
\sum_{f\in S(k\leqslant K)}L\Bigl(\frac12,f\Bigr)^4\ll K^{2+\varepsilon},
$$
where $\varepsilon>0$ is arbitrary. For $f\in S_k(\Gamma)^+$ let $L(s,\operatorname{sym}^2f)$ denote the symmetric square $L$-function. It is proved
that as $k\to\infty$ the frequence
$$
\frac{\#\{f\mid f\in S_k(\Gamma)^+,L(1,\operatorname{sym}^2f)\leqslant x\}}{\#\{f\mid f\in S_k(\Gamma)^+\}}
$$
converges to a distribution function $G(x)$ at every point of continuity of the latter, and for the corresponding characteristic function an explicit expression is obtained.
Received: 06.09.2004
Citation:
O. M. Fomenko, “Automorphic $L$-functions in the weight aspect”, Analytical theory of numbers and theory of functions. Part 20, Zap. Nauchn. Sem. POMI, 314, POMI, St. Petersburg, 2004, 221–246; J. Math. Sci. (N. Y.), 133:6 (2006), 1733–1748
Linking options:
https://www.mathnet.ru/eng/znsl758 https://www.mathnet.ru/eng/znsl/v314/p221
|
Statistics & downloads: |
Abstract page: | 429 | Full-text PDF : | 92 | References: | 79 |
|