Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 314, Pages 221–246 (Mi znsl758)  

This article is cited in 3 scientific papers (total in 3 papers)

Automorphic $L$-functions in the weight aspect

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (279 kB) Citations (3)
References:
Abstract: Let $S_k(\Gamma)$ be the space of holomorphic $\Gamma$-cusp forms $f(z)$ of even weight $k\geqslant12$ for $\Gamma=SL(2,\mathbb Z)$, and let $S_k(\Gamma)^+$ be the set of all Hecke eigenforms from this space with the first Fourier coefficient $a_f(1)=1$. For $f\in S_k(\Gamma)+$, consider the Hecke $L$-function $L(s,f)$. Let
$$ S(k\leqslant K)=\bigcup_{\substack{12\leqslant k\leqslant K\\k\text{ even}}}S_k(\Gamma)^+. $$
It is proved that for large $K$,
$$ \sum_{f\in S(k\leqslant K)}L\Bigl(\frac12,f\Bigr)^4\ll K^{2+\varepsilon}, $$
where $\varepsilon>0$ is arbitrary. For $f\in S_k(\Gamma)^+$ let $L(s,\operatorname{sym}^2f)$ denote the symmetric square $L$-function. It is proved that as $k\to\infty$ the frequence
$$ \frac{\#\{f\mid f\in S_k(\Gamma)^+,L(1,\operatorname{sym}^2f)\leqslant x\}}{\#\{f\mid f\in S_k(\Gamma)^+\}} $$
converges to a distribution function $G(x)$ at every point of continuity of the latter, and for the corresponding characteristic function an explicit expression is obtained.
Received: 06.09.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 133, Issue 6, Pages 1733–1748
DOI: https://doi.org/10.1007/s10958-006-0085-y
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “Automorphic $L$-functions in the weight aspect”, Analytical theory of numbers and theory of functions. Part 20, Zap. Nauchn. Sem. POMI, 314, POMI, St. Petersburg, 2004, 221–246; J. Math. Sci. (N. Y.), 133:6 (2006), 1733–1748
Citation in format AMSBIB
\Bibitem{Fom04}
\by O.~M.~Fomenko
\paper Automorphic $L$-functions in the weight aspect
\inbook Analytical theory of numbers and theory of functions. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 314
\pages 221--246
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl758}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2119743}
\zmath{https://zbmath.org/?q=an:1091.11014}
\elib{https://elibrary.ru/item.asp?id=9129788}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 133
\issue 6
\pages 1733--1748
\crossref{https://doi.org/10.1007/s10958-006-0085-y}
\elib{https://elibrary.ru/item.asp?id=13503484}
Linking options:
  • https://www.mathnet.ru/eng/znsl758
  • https://www.mathnet.ru/eng/znsl/v314/p221
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:429
    Full-text PDF :92
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024