|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 314, Pages 213–220
(Mi znsl757)
|
|
|
|
The continuously removable sets for quasiconformal mappings
A. V. Tyutyuev, V. A. Shlyk Far Eastern National University
Abstract:
Let $D$ be a domain in the $n$-dimensional Euclidean space $R^n$, $n\geqslant 2$, and let $E$ be a compact in $D$. The paper presents conditions on the compact $E$ under which any homeomorphic mapping $f\colon D\setminus E\rightarrow R^n$ can be extended to a continuous mapping $f\colon D\rightarrow\bar{R}^n=R^n\cup\{\infty\}$. These conditions define the class of NCS-compacts, which, for $n=2$, coincides with the class of topologically removable compacts for conformal and quasiconformal mappings.
Received: 16.06.2004
Citation:
A. V. Tyutyuev, V. A. Shlyk, “The continuously removable sets for quasiconformal mappings”, Analytical theory of numbers and theory of functions. Part 20, Zap. Nauchn. Sem. POMI, 314, POMI, St. Petersburg, 2004, 213–220; J. Math. Sci. (N. Y.), 133:6 (2006), 1728–1732
Linking options:
https://www.mathnet.ru/eng/znsl757 https://www.mathnet.ru/eng/znsl/v314/p213
|
Statistics & downloads: |
Abstract page: | 307 | Full-text PDF : | 81 | References: | 67 |
|