|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 314, Pages 41–51
(Mi znsl748)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions
E. G. Goluzina St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
The paper studies the region of values of the system $\{f(z_1), f(z_2),\dots,f(z_n)\}$ in the class $T$ of functions $f(z)=z+a_2z^2+\dots$ regular in the unit disk and satisfying the condition $\operatorname{Im}f(z)\cdot\operatorname{Im}z>0$ for $\operatorname{Im}z\ne0$.
Received: 25.06.2004
Citation:
E. G. Goluzina, “On the region of values of the system $\{f(z_1),\dots,f(z_n)\}$ in the class of typically real functions”, Analytical theory of numbers and theory of functions. Part 20, Zap. Nauchn. Sem. POMI, 314, POMI, St. Petersburg, 2004, 41–51; J. Math. Sci. (N. Y.), 133:6 (2006), 1627–1633
Linking options:
https://www.mathnet.ru/eng/znsl748 https://www.mathnet.ru/eng/znsl/v314/p41
|
Statistics & downloads: |
Abstract page: | 312 | Full-text PDF : | 70 | References: | 85 |
|