|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 314, Pages 15–32
(Mi znsl746)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
The distribution of the values of Hecke $L$-functions at 1
E. P. Golubeva St. Petersburg State University of Telecommunications
Abstract:
Let $S_2(q)$ be the set of primitive forms in the space $S_2(\Gamma_0(q))$ of holomorpic $\Gamma_0(q)$-cusp forms of weight $2$. Let $f\in S_2(q)$ and let $L_f(S)$ be the $L$-function of $f(z)$. It is proved that the set $\{\log L_f(1)<x,f\in S_2(q)\}$ has a limit
distribution function. The rate of convergence to this limit function is estimated.
Received: 10.09.2004
Citation:
E. P. Golubeva, “The distribution of the values of Hecke $L$-functions at 1”, Analytical theory of numbers and theory of functions. Part 20, Zap. Nauchn. Sem. POMI, 314, POMI, St. Petersburg, 2004, 15–32; J. Math. Sci. (N. Y.), 133:6 (2006), 1611–1621
Linking options:
https://www.mathnet.ru/eng/znsl746 https://www.mathnet.ru/eng/znsl/v314/p15
|
Statistics & downloads: |
Abstract page: | 182 | Full-text PDF : | 52 | References: | 34 |
|