Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2024, Volume 531, Pages 41–52 (Mi znsl7441)  

The cancellation property of torsion-free abelian groups of finite rank

A. V. Blazhenov

St. Petersburg National Research University of Information Technologies, Mechanics and Optics
Abstract: A final solution to Fuchs's problem 70 on the cancellation property is given. First, Eichler's theorem is modified for the case of totally definite quaternion algebras. Then this result is applied to show that one of the conditions in the author's earlier criterion can be omitted.
Key words and phrases: Abelian groups, cancellation, Eichler's theorem.
Received: 25.01.2024
Document Type: Article
UDC: 512.541.3
Language: Russian
Citation: A. V. Blazhenov, “The cancellation property of torsion-free abelian groups of finite rank”, Problems in the theory of representations of algebras and groups. Part 40, Zap. Nauchn. Sem. POMI, 531, POMI, St. Petersburg, 2024, 41–52
Citation in format AMSBIB
\Bibitem{Bla24}
\by A.~V.~Blazhenov
\paper The cancellation property of torsion-free abelian groups of finite rank
\inbook Problems in the theory of representations of algebras and groups. Part~40
\serial Zap. Nauchn. Sem. POMI
\yr 2024
\vol 531
\pages 41--52
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7441}
Linking options:
  • https://www.mathnet.ru/eng/znsl7441
  • https://www.mathnet.ru/eng/znsl/v531/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:2
    Full-text PDF :1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024