|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 315, Pages 149–154
(Mi znsl744)
|
|
|
|
Remark about the maximum of the modulus of an analytic function on the boundary
N. A. Shirokov Saint-Petersburg State University
Abstract:
Let $\Lambda^{\alpha}$ be the analytic Hölder class in the unit disc $\mathbb D$. For $f\in \Lambda^{\alpha}$ and $I\subset\partial\mathbb D$, let $M_f(I)=\max_I|f|$. Assume that $I$, $J$ are arcs such that $|J|=2|I|$, $J$ and $I$ have common middle point. Then
$$
M_f(J)\le C(\alpha,f)\frac{|I|^{\alpha}+M_f(I)}{\log^{\alpha}\Bigl(\frac{|I|^{\alpha}}{M_f(I)}+2\Bigr)}.
$$
It is proved that this estimate cannot be improved.
Received: 06.09.2004
Citation:
N. A. Shirokov, “Remark about the maximum of the modulus of an analytic function on the boundary”, Investigations on linear operators and function theory. Part 32, Zap. Nauchn. Sem. POMI, 315, POMI, St. Petersburg, 2004, 149–154; J. Math. Sci. (N. Y.), 134:4 (2006), 2320–2323
Linking options:
https://www.mathnet.ru/eng/znsl744 https://www.mathnet.ru/eng/znsl/v315/p149
|
Statistics & downloads: |
Abstract page: | 259 | Full-text PDF : | 83 | References: | 46 |
|