Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 530, Pages 68–79 (Mi znsl7433)  

Automatic evaluation of interpretability methods in text categorization

A. Rogova, N. Lukashevichb

a Bauman Moscow State Technical University, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Neural networks have begun to take over more and more of a person's everyday life, and the complexity of neural networks is only increasing. When tested on collected test data, the model can show quite decent performance, but when used in real-life conditions, it can give completely unexpected results. To determine the cause of the error, it is important to know how the model makes its decisions. In this work, we consider various methods of interpreting the BERT model in classification tasks, and also consider a method for evaluating interpretation methods using vector representations fastText and GloVe.
Key words and phrases: interpretability, BERT, classification.
Document Type: Article
UDC: 81.322.2
Language: English
Citation: A. Rogov, N. Lukashevich, “Automatic evaluation of interpretability methods in text categorization”, Investigations on applied mathematics and informatics. Part II–2, Zap. Nauchn. Sem. POMI, 530, POMI, St. Petersburg, 2023, 68–79
Citation in format AMSBIB
\Bibitem{RogLuk23}
\by A.~Rogov, N.~Lukashevich
\paper Automatic evaluation of interpretability methods in text categorization
\inbook Investigations on applied mathematics and informatics. Part~II--2
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 530
\pages 68--79
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7433}
Linking options:
  • https://www.mathnet.ru/eng/znsl7433
  • https://www.mathnet.ru/eng/znsl/v530/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :22
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024