Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 529, Pages 176–196 (Mi znsl7426)  

Blending of predictions boosts understanding for multimodal advertisements

A. Alekseeva, A. Savchenkob, E. Tutubalinacd, E. Myasnikove, S. Nikolenkoa

a Steklov Institute of Mathematics at St. Petersburg, Russia
b Sber AI Lab, Russia
c Sber AI, Russia
d Kazan Federal University, Russia
e Samara National Research University, Russia
References:
Abstract: The advertising industry employs several content modalities to deliver implied messages: images, videos, text, music, and all of them combined. “Decoding” a message implied by multimodal content often requires both text and visual components. We study the tasks of multimodal symbolism prediction, topic detection, and sentiment type classification. Motivated by the difference in parts of the message conveyed by two modalities in advertisements, we train separate models for images and texts and significantly improve upon current state of the art by blending image- and text-based predictions (with OCR-extracted text), providing a comprehensive experimental validation of our approach.
Key words and phrases: multimodal, ads understanding, topic detection, sentiment, sentiment classification.
Funding agency Grant number
Russian Science Foundation 23-11-00358
The work has been supported by the Russian Science Foundation grant # 23-11-00358.
Received: 12.10.2023
Document Type: Article
UDC: 004.852
Language: English
Citation: A. Alekseev, A. Savchenko, E. Tutubalina, E. Myasnikov, S. Nikolenko, “Blending of predictions boosts understanding for multimodal advertisements”, Investigations on applied mathematics and informatics. Part II–1, Zap. Nauchn. Sem. POMI, 529, POMI, St. Petersburg, 2023, 176–196
Citation in format AMSBIB
\Bibitem{AleSavTut23}
\by A.~Alekseev, A.~Savchenko, E.~Tutubalina, E.~Myasnikov, S.~Nikolenko
\paper Blending of predictions boosts understanding for multimodal advertisements
\inbook Investigations on applied mathematics and informatics. Part~II--1
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 529
\pages 176--196
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7426}
Linking options:
  • https://www.mathnet.ru/eng/znsl7426
  • https://www.mathnet.ru/eng/znsl/v529/p176
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :40
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024