Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 529, Pages 43–53 (Mi znsl7418)  

Wav2Vec2 without Attention: do you need Hopfield Networks for Self-Supervised Learning of Speech Representations?

D. Grebenkin, I. Bondarenko

Laboratory of Applied Digital Technologies, Novosibirsk State University
References:
Abstract: In this work, we consider the possibility of replacing multi-head attention with dense associative memory (DAM) layers in the wav2vec2 automatic speech recognition algorithm. We examine the hypothesis that the concept of modern Hopfield networks is more suitable for restoration of missing fragments of the audio signal task and speech-to-text task than multi-head attention. Our experiments indicate that the model with the new architecture allows to improve the quality of speech recognition and can be used for pretraining the models on a large amount of audio data.
Key words and phrases: speech recognition, self-attention, 2 associative memory.
Received: 06.09.2023
Document Type: Article
UDC: 81.322.5
Language: English
Citation: D. Grebenkin, I. Bondarenko, “Wav2Vec2 without Attention: do you need Hopfield Networks for Self-Supervised Learning of Speech Representations?”, Investigations on applied mathematics and informatics. Part II–1, Zap. Nauchn. Sem. POMI, 529, POMI, St. Petersburg, 2023, 43–53
Citation in format AMSBIB
\Bibitem{GreBon23}
\by D.~Grebenkin, I.~Bondarenko
\paper Wav2Vec2 without Attention: do you need Hopfield Networks for Self-Supervised Learning of Speech Representations?
\inbook Investigations on applied mathematics and informatics. Part~II--1
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 529
\pages 43--53
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7418}
Linking options:
  • https://www.mathnet.ru/eng/znsl7418
  • https://www.mathnet.ru/eng/znsl/v529/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :67
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024