Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 528, Pages 47–53 (Mi znsl7401)  

An action of the Klein 4-group on the angular velocity

S. Adlaj

Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow, Russian
References:
Abstract: Expressing the angular velocity via Euler angles is a key step, linking kinematics with rigid body dynamics. Once the components of angular velocity are found in a rotating frame, they are (simultaneously) found in an inertial (non-rotating) frame. And once the components are found for successive intrinsic rotations, they are just as readily found for successive extrinsic rotations. The action of the Klein 4-group on the angular velocity, which we describe in this paper, provides further insight into the kinematic relations of rigid body motion, including the critical motion of Dzhanibekov flipping wingnut.
Key words and phrases: angular velocity, angular momentum, Dzhanibekov effect, Euler angles, Galois axis, Klein 4-group, moving frame, orthonormal basis, principal axes of inertia, pseudovector, transition matrix.
Received: 23.10.2023
Document Type: Article
UDC: 531.01, 531.15
Language: English
Citation: S. Adlaj, “An action of the Klein 4-group on the angular velocity”, Representation theory, dynamical systems, combinatorial methods. Part XXXV, Zap. Nauchn. Sem. POMI, 528, POMI, St. Petersburg, 2023, 47–53
Citation in format AMSBIB
\Bibitem{Adl23}
\by S.~Adlaj
\paper An action of the Klein 4-group on the angular velocity
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXV
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 528
\pages 47--53
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7401}
Linking options:
  • https://www.mathnet.ru/eng/znsl7401
  • https://www.mathnet.ru/eng/znsl/v528/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:77
    Full-text PDF :27
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024