|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 315, Pages 96–101
(Mi znsl740)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Inverse problem for the discrete periodic Schrödinger operator
E. Korotyaeva, A. Kutsenkobc a Humboldt-Universität zu Berlin, Institut für Mathematik
b Saint-Petersburg State University
c Universität Potsdam Institut für Mathematik
Abstract:
We study the isospectral sets for the discrete 1D Schrödinger operator on $\mathbb Z$ with a N+1 periodic potential. We show that for small odd potentials the isospectral set consists of $2^{(N+1)/2}$ elements, while for the large potentials the isospectral set consists of $(N+1)!$ elements. Moreover, the asymptotics of the end of the spectrum of the Schrödinger operator for small (and large) potentials are determined.
Received: 20.04.2004
Citation:
E. Korotyaev, A. Kutsenko, “Inverse problem for the discrete periodic Schrödinger operator”, Investigations on linear operators and function theory. Part 32, Zap. Nauchn. Sem. POMI, 315, POMI, St. Petersburg, 2004, 96–101; J. Math. Sci. (N. Y.), 134:4 (2006), 2292–2294
Linking options:
https://www.mathnet.ru/eng/znsl740 https://www.mathnet.ru/eng/znsl/v315/p96
|
Statistics & downloads: |
Abstract page: | 234 | Full-text PDF : | 91 | References: | 27 |
|