Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 242–255 (Mi znsl7398)  

Polynomial approximation by doubly periodic Weierstrass functions on disjoint segments in the $L^P$ metric

M. A. Shagaya, N. A. Shirokovb

a National Research University Higher School of Economics, St. Petersburg School of Economics and Management
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $s_k, 1\leqslant k\leqslant m, m\geqslant 2$, be disjoint segments lying in a parallelogram $Q$. We denote by $\wp(z)$ a doubly periodic Weierstrass function with the fundamental parallelogram $Q$. Let $f_k:s_k\rightarrow\mathbb{C}$ be functions, and let $f_k'\in L^{p_k}(s_k), 1\leqslant k\leqslant m, 1<p_k<\infty$.
Consider the Green function $G(z)$ of the domain $\mathbb{C}\backslash\overset{m}{\underset{k=1}{\cup}} s_k$ with the pole at infinity and define
$$ L_h\stackrel{\rm def}{=} \{\ \zeta: \zeta\in\mathbb{C}\backslash\overset{m}{\underset{k=1}{\cup}} s_k, G(\zeta)=\log(1+h) \}, h>0; \rho_h(\zeta)\stackrel{\rm def}{=} \mathrm{dist}(\zeta,L_h). $$
Theorem. There exist polynomials $P_n(u,v), \deg P_n\leqslant n, n=1,2,\cdots$, such that
$$ \overset{m}{\underset{k=1}{\sum}}{\underset{s_k}{\int}}\left|\frac{f_k(\zeta)-P_n(\wp(\zeta),\wp'(\zeta))}{\rho_{\frac1n}(\zeta)}\right|^{p_k}|d\zeta|\leqslant c. $$
Key words and phrases: Weierstrass doubly periodic functions, approximation, polynomials.
Funding agency Grant number
Russian Science Foundation 23-11-00171
Received: 23.09.2023
Document Type: Article
UDC: 517.547
Language: Russian
Citation: M. A. Shagay, N. A. Shirokov, “Polynomial approximation by doubly periodic Weierstrass functions on disjoint segments in the $L^P$ metric”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 242–255
Citation in format AMSBIB
\Bibitem{ShaShi23}
\by M.~A.~Shagay, N.~A.~Shirokov
\paper Polynomial approximation by doubly periodic Weierstrass functions on disjoint segments in the $L^P$ metric
\inbook Investigations on linear operators and function theory. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 527
\pages 242--255
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7398}
Linking options:
  • https://www.mathnet.ru/eng/znsl7398
  • https://www.mathnet.ru/eng/znsl/v527/p242
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024