Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 221–241 (Mi znsl7397)  

Ahlfors-type theorem for Hausdorff measures

A. A. Florinskiia, K. A. Fofanovb, N. A. Shirokovac

a National Research University Higher School of Economics, St. Petersburg School of Economics and Management
b Herzen State Pedagogical University of Russia, St. Petersburg
c Saint Petersburg State University
References:
Abstract: Suppose that $\Delta\subset\mathbb{C}$ is a domain, a function $f$ is analytic in $\Delta$, $D=f(\Delta)$ is viewed as a Riemann surface. We put $l_{R}=\{z\in\Delta: |f(z)|=R\}$. Let $E\subset\Delta$ be a closed set. Put $h_{\alpha,\beta}(r)=r^{\alpha}|\ln{r}|^{\beta},$ $0<\alpha<1,$ $0<\beta<1$. Let $\Lambda_{\alpha,\beta}(\cdot)$, $\Lambda_{\alpha+1,\beta}(\cdot)$ be the Hausdorff measures with respect to the functions $h_{\alpha,\beta}$, $h_{\alpha+1,\beta}$. Assume that $\Lambda_{\alpha+1,\beta}(E)<\infty$. We introduce the sets $l_{R,\varepsilon}=\{z\in l_{R}: \mathrm{dist} (z,\partial\Delta)\geq\varepsilon, |z|\leq\frac{1}{\varepsilon}\}$ and $T_{R,\varepsilon}=f(l_{R,\varepsilon}\cap E)$, $T_{R,\varepsilon}\subset D$. Put
$$ G_{\varepsilon}(R)=\begin{cases} 0& \text{ if } \Lambda_{\alpha,\beta}(T_{R,\varepsilon})=0 \text{ or } \Lambda_{\alpha,\beta}(T_{R,\varepsilon})=\infty, \\ \frac{\Lambda_{\alpha,\beta}^{\frac{1+\alpha}{\alpha}}(E\cap l_{R,\varepsilon})}{\Lambda_{\alpha,\beta}^{\frac{1}{\alpha}}(T_{R,\varepsilon})}& \text{ if } 0<\Lambda_{\alpha,\beta}(T_{R,\varepsilon})<\infty.\end{cases} $$
We define the upper Lebesgue integral $\underset{0 }{\overset{\infty}{\int^{\ast}}}g \text{d}m$ for a function $g$, ${g(x) \geq 0}$, $x>0$ in the following way: let $U(y)\overset{\text{def}}{=}\{x>0: g(x)>y\},$ $H(y)=m^{*}U(y)$. Then we put $\underset{0 }{\overset{\infty}{\int^{\ast}}}g \text{d}m \overset{\text{def}}{=}\int\limits_{0}^{\infty}H(y)\text{d}y.$
We prove the following result.
Theorem. The condition $\Lambda_{\alpha,\beta}(T_{R,\varepsilon})<\infty$ is fulfilled for almost all $R$ with respect to the $1$-Lebesgue measure and
$$ \underset{0 }{\overset{\infty}{\int^{\ast}}}\underset{\varepsilon\to+0}{\underline\lim}G_{\varepsilon}(R)\text{d}R\leq2\Lambda_{1+\alpha,\beta}(E). $$
Key words and phrases: length and area principle, Hausdorff measures, Riemann surfaces.
Received: 23.09.2023
Document Type: Article
UDC: 517.545
Language: Russian
Citation: A. A. Florinskii, K. A. Fofanov, N. A. Shirokov, “Ahlfors-type theorem for Hausdorff measures”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 221–241
Citation in format AMSBIB
\Bibitem{FloFofShi23}
\by A.~A.~Florinskii, K.~A.~Fofanov, N.~A.~Shirokov
\paper Ahlfors-type theorem for Hausdorff measures
\inbook Investigations on linear operators and function theory. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 527
\pages 221--241
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7397}
Linking options:
  • https://www.mathnet.ru/eng/znsl7397
  • https://www.mathnet.ru/eng/znsl/v527/p221
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :18
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024