Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 204–220 (Mi znsl7396)  

Inverse theorem for approximation on subsets of a domain with cups

K. А. Sintsova

National Research University Higher School of Economics, St. Petersburg School of Economics and Management
References:
Abstract: Let $\mathfrak{P}(z)$ be a doubly periodic Weierstrass function with periods $2\boldsymbol{\omega}_1$, $2\boldsymbol{\omega}_2$, and let $ Q$ be the parallelogramm of periods, $Q = \{z \in \mathbb{C}$ $: z = 2\alpha_1\boldsymbol{\omega}_1 + 2\alpha_2\boldsymbol{\omega}_2, \alpha_1, \alpha_2 \in [0,1)\}$. We consider a simply connected domain $D, \overline{D} \subset Q$, such that its boundary $\partial D$ contains cusps, and a function $f$ that is analytic in $D$ and continuous on $\partial D$. We assume that the modulus of continuity $\omega(t)$ satisfyes the relation
$$ \int\limits_0^x \frac{\omega(t)}{t} dt + x \int\limits_x^\infty \frac{\omega(t)}{t^2} dt \leq c\omega(x). $$
Let a function $\Phi$ map conformally the domain $\mathbb{C} \setminus D$ onto $\mathbb{C} \setminus \mathbb{D}$ with the normalization $\Phi(\infty) = \infty, \Phi^{\prime}(\infty) > 0$. We put $L_{1+t} = \{z \in \mathbb{C} \setminus D: |\Phi(z)| = 1+t\}, \delta_n(z) = \mathrm{dist} (z, L_{1+\frac{1}{n}}), z \in \partial D$. The main result of the paper is the following statement.
Theorem 1. Assume that there exists a sequence of polynomials $P_n(u, v)$, $\deg P_n \leq n$, such that
$$ |f(z) - P_n(\mathfrak{P}(z), \mathfrak{P}^{\prime}(z))| \leq C \delta^{r}_n(z)\omega(\delta_{n}(z)), z \in \partial D. $$
$C$ is independent on $n$ and $z$. Then $f \in H^{r+\omega}(D)$.
Key words and phrases: analytic functions, approximation, Weierstrass doubly periodic function.
Received: 11.07.2023
Document Type: Article
UDC: 517.537
Language: Russian
Citation: K. А. Sintsova, “Inverse theorem for approximation on subsets of a domain with cups”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 204–220
Citation in format AMSBIB
\Bibitem{Sin23}
\by K.~А.~Sintsova
\paper Inverse theorem for approximation on subsets of a domain with cups
\inbook Investigations on linear operators and function theory. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 527
\pages 204--220
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7396}
Linking options:
  • https://www.mathnet.ru/eng/znsl7396
  • https://www.mathnet.ru/eng/znsl/v527/p204
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :18
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024