Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 155–182 (Mi znsl7394)  

Variations of the Bourgain method for $\mathrm{K}$-closedness of certain subcouples

D. V. Rutsky

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: In the early nineties J. Bourgain proved that the couple $(\mathrm{L}_ {1}^P, \mathrm{L}_ {p}^P)$ is $\mathrm{K}$-closed in $(\mathrm{L}_ {1}, \mathrm{L}_ {p})$, $1 < p < \infty$, where the subspaces $\mathrm{L}_ {q}^P$ of $\mathrm{L}_ {q}$ are defined by $\{P f = f\}$ with a projection $P$ that is a Calderón–Zygmund operator. $\mathrm{K}$-closedness means that arbitrary measurable decompositions in $\mathrm{L}_ {1} + \mathrm{L}_ {p}$ of functions from $\mathrm{L}_ {1}^P + \mathrm{L}_ {p}^P$ can be replaced by decompositions in $\mathrm{L}_ {1}^P + \mathrm{L}_ {p}^P$ with suitable norm estimates. In the present work we consider some variations of J. Bourgain's argument that natually lead to many of its known generalizations. To illustrate this, we prove the following generalization of a result by S. V. Kislyakov and Q. Xu about $\mathrm{K}$-closedness of Hardy spaces on the bidisk: spaces of functions on $\mathbb R^2$ with Fourier transform supported on an arbitrary finite union of polygons are $\mathrm{K}$-closed in $(\mathrm{L}_ {1}, \mathrm{L}_ {\infty})$. On the other hand, some counterexamples reveal certain hard limitations of such methods if one tries to apply them in higher dimensions and to more complicated spaces of functions on the line and on the plane. Among other things, we show how a recent result by S. V. Kislyakov and I. K. Zlotnikov about $\mathrm{K}$-closedness of the coinvariant subspaces of the shift operator ${\mathcal K}_\theta^p$ can be derived directly from J. Bourgain's original result to achieve $\mathrm{K}$-closedness of the entire scale $(\mathcal K^{1}_\theta, \mathcal K_\theta^{\infty})$.
Key words and phrases: real interpolation, $\mathrm{K}$-closedness, Hardy spaces, Lorentz spaces, Sidon problem, massive sets, coinvariant subspaces of the shift operator.
Funding agency Grant number
Russian Science Foundation 23-11-00171
Received: 23.11.2023
Document Type: Article
UDC: 517.982.274
Language: Russian
Citation: D. V. Rutsky, “Variations of the Bourgain method for $\mathrm{K}$-closedness of certain subcouples”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 155–182
Citation in format AMSBIB
\Bibitem{Rut23}
\by D.~V.~Rutsky
\paper Variations of the Bourgain method for $\mathrm{K}$-closedness of certain subcouples
\inbook Investigations on linear operators and function theory. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 527
\pages 155--182
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7394}
Linking options:
  • https://www.mathnet.ru/eng/znsl7394
  • https://www.mathnet.ru/eng/znsl/v527/p155
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :38
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024