Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 71–83 (Mi znsl7390)  

Paltanea type theorems on estimation by positive discrete functionals

L. N. Ikhsanov

Saint Petersburg State University
References:
Abstract: The article is concerned with inequalities of the type
\begin{equation*} |F(f)-F(e_0)f(x)| \le F(e_0)\omega_2(f, h), \end{equation*}
there $F$ is a functional of the form $F(f)=\sum\limits_{y \in Y}\gamma(y)f(y)$, and $Y$ is an at most countable set with no accumulation points on $\mathbb{R}$, $\gamma : Y \to (0, \infty)$.
Key words and phrases: positive operators, second modulus of continuity.
Funding agency Grant number
Russian Science Foundation 18-11-00055
Received: 02.11.2022
Document Type: Article
UDC: 517.51
Language: Russian
Citation: L. N. Ikhsanov, “Paltanea type theorems on estimation by positive discrete functionals”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 71–83
Citation in format AMSBIB
\Bibitem{Ikh23}
\by L.~N.~Ikhsanov
\paper Paltanea type theorems on estimation by positive discrete functionals
\inbook Investigations on linear operators and function theory. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 527
\pages 71--83
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7390}
Linking options:
  • https://www.mathnet.ru/eng/znsl7390
  • https://www.mathnet.ru/eng/znsl/v527/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :27
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024