Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 54–70 (Mi znsl7389)  

Reverse Carleson measures for Hardy spaces in the unit ball

E. Doubtsovab

a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $H^p=H^p(B_d)$ denote the Hardy space in the open unit ball $B_d$ of $\mathbb{C}^d$, $d\ge 1$. We characterize the reverse Carleson measures for $H^p$, $1<p<\infty$, that is, we describe all finite positive Borel measures $\mu$ defined on the closed ball $\overline{B}_d$ and such that
$$ \|f \|_{H^p} \le c \|f\|_{L^p(\overline{B}_d,\mu)} $$
for all $f\in H^p(B_d) \cap C(\overline{B}_d)$ and a universal constant $c>0$. Given a noninner holomorphic function $b: B_d \to B_1$, we obtain properties of the reverse Carleson measures for the de Branges–Rovnyak space $\mathcal{H}(b)$.
Key words and phrases: Hardy spaces, reverse Carleson measures, de Branges–Rovnyak spaces.
Funding agency Grant number
Russian Science Foundation 19-11-00058
Received: 23.09.2023
Document Type: Article
UDC: 517.55
Language: Russian
Citation: E. Doubtsov, “Reverse Carleson measures for Hardy spaces in the unit ball”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 54–70
Citation in format AMSBIB
\Bibitem{Dou23}
\by E.~Doubtsov
\paper Reverse Carleson measures for Hardy spaces in the unit ball
\inbook Investigations on linear operators and function theory. Part~51
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 527
\pages 54--70
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7389}
Linking options:
  • https://www.mathnet.ru/eng/znsl7389
  • https://www.mathnet.ru/eng/znsl/v527/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:51
    Full-text PDF :21
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024