|
Zapiski Nauchnykh Seminarov POMI, 2023, Volume 527, Pages 54–70
(Mi znsl7389)
|
|
|
|
Reverse Carleson measures for Hardy spaces in the unit ball
E. Doubtsovab a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Abstract:
Let $H^p=H^p(B_d)$ denote the Hardy space in the open unit ball $B_d$ of $\mathbb{C}^d$, $d\ge 1$. We characterize the reverse Carleson measures for $H^p$, $1<p<\infty$, that is, we describe all finite positive Borel measures $\mu$ defined on the closed ball $\overline{B}_d$ and such that $$ \|f \|_{H^p} \le c \|f\|_{L^p(\overline{B}_d,\mu)} $$ for all $f\in H^p(B_d) \cap C(\overline{B}_d)$ and a universal constant $c>0$. Given a noninner holomorphic function $b: B_d \to B_1$, we obtain properties of the reverse Carleson measures for the de Branges–Rovnyak space $\mathcal{H}(b)$.
Key words and phrases:
Hardy spaces, reverse Carleson measures, de Branges–Rovnyak spaces.
Received: 23.09.2023
Citation:
E. Doubtsov, “Reverse Carleson measures for Hardy spaces in the unit ball”, Investigations on linear operators and function theory. Part 51, Zap. Nauchn. Sem. POMI, 527, POMI, St. Petersburg, 2023, 54–70
Linking options:
https://www.mathnet.ru/eng/znsl7389 https://www.mathnet.ru/eng/znsl/v527/p54
|
Statistics & downloads: |
Abstract page: | 51 | Full-text PDF : | 21 | References: | 20 |
|