Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 526, Pages 172–192 (Mi znsl7386)  

On one limit theorem for branching random walks with a finite number of particle types

N. V. Smorodinaab, E. B. Yarovayacd

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
c Lomonosov Moscow State University
d Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We consider a branching random walk on the lattice $\mathbb{Z}^d$, $d\in \mathbb{N}$, in which at any point of $\mathbb{Z}^d$ a particle of every type can die or produce an arbitrary number of offsprings of different types. The walk of a particle of each type on $\mathbb{Z}^d$ is described by a symmetric homogeneous and irreducible random walk. We assume that the branching intensity of particles of any type at a point $x\in \mathbb{Z}^d$ tends to zero as $\|x\|\to\infty$, and an additional condition is fulfilled on the parameters of the branching random walk, guaranteeing exponential in time growth of the mean number of particles of each type at each point $\mathbb{Z}^d$. Under these assumptions we prove the limit theorem on the convergence of normalised number of particles of each type at an arbitrary fixed point $y_{0}\in \mathbb{Z}^d$ as $t\rightarrow\infty$ to the limit in mean square. The proof is based on an approximation of the normalised number of particles by some non-negative martingale.
Key words and phrases: multi-type branching random walks, martingales, limit theorems.
Funding agency Grant number
Russian Science Foundation 23-11-00375
Received: 29.09.2023
Document Type: Article
UDC: 519.2
Language: Russian
Citation: N. V. Smorodina, E. B. Yarovaya, “On one limit theorem for branching random walks with a finite number of particle types”, Probability and statistics. Part 35, Zap. Nauchn. Sem. POMI, 526, POMI, St. Petersburg, 2023, 172–192
Citation in format AMSBIB
\Bibitem{SmoYar23}
\by N.~V.~Smorodina, E.~B.~Yarovaya
\paper On one limit theorem for branching random walks with a finite number of particle types
\inbook Probability and statistics. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 526
\pages 172--192
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7386}
Linking options:
  • https://www.mathnet.ru/eng/znsl7386
  • https://www.mathnet.ru/eng/znsl/v526/p172
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :28
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024