Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 526, Pages 159–171 (Mi znsl7385)  

Convex hulls of random walks: conic intrinsic volumes approach

F. Petrova, J. Randon-Furlingb, D. Zaporozhetsac

a St. Petersburg Department, Steklov Institute of Mathematics, Fontanka 27, 191011 St. Petersburg
b Centre Borelli – ENS Paris-Saclay CNRS | MSDA College of Computing – UM6P
c St. Petersburg State University, Russia
References:
Abstract: Sparre Andersen discovered a celebrated distribution-free formula for the probability of a random walk remaining positive up to a moment $n$. Kabluchko et al. expanded on this result by calculating the absorption probability for the convex hull of multidimensional random walks. They approached this by transforming the problem into a geometric one, which they then solved using Zaslavsky's theorem. We propose a completely different approach that allows us to directly derive the generating function for the absorption probability. The cornerstone of our method is the Gauss–Bonnet formula for polyhedral cones.
Key words and phrases: absorption probability, conic intrinsic volumes, convex hulls, conic hulls, distribution-free probability, Gauss–Bonnet theorem, polyhedral cones, random walks, Sparre Andersen theorem, symmetrical exchangeability.
Funding agency Grant number
Russian Science Foundation 19-71-30002
The work is supported by Russian Science Foundation project 19-71-30002.
Received: 15.11.2023
Document Type: Article
UDC: 519.2
Language: English
Citation: F. Petrov, J. Randon-Furling, D. Zaporozhets, “Convex hulls of random walks: conic intrinsic volumes approach”, Probability and statistics. Part 35, Zap. Nauchn. Sem. POMI, 526, POMI, St. Petersburg, 2023, 159–171
Citation in format AMSBIB
\Bibitem{PetRanZap23}
\by F.~Petrov, J.~Randon-Furling, D.~Zaporozhets
\paper Convex hulls of random walks: conic intrinsic volumes approach
\inbook Probability and statistics. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 526
\pages 159--171
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7385}
Linking options:
  • https://www.mathnet.ru/eng/znsl7385
  • https://www.mathnet.ru/eng/znsl/v526/p159
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:73
    Full-text PDF :50
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024