Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 526, Pages 140–158 (Mi znsl7384)  

On the probabilistic representation of the resolvent of the two-dimensional Schrödinger operator

A. K. Nikolaevab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Chebyshev Laboratory, St. Petersburg State University, Department of Mathematics and Mechanics
References:
Abstract: We consider a family of random linear operators that arises in the construction of a probabilistic representation of the resolvent of the two-dimensional Schrödinger operator. It is shown that with probability one the operators of this family are integral operators in $L_2(\mathbb{R}^2)$. The properties of the kernels of the corresponding operators are also investigated.
Key words and phrases: stochastic processes, two-dimensional Wiener process, the resolvent of the two-dimensional Schrödinger operator.
Funding agency Grant number
Gazprom Neft
Received: 08.09.2023
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. K. Nikolaev, “On the probabilistic representation of the resolvent of the two-dimensional Schrödinger operator”, Probability and statistics. Part 35, Zap. Nauchn. Sem. POMI, 526, POMI, St. Petersburg, 2023, 140–158
Citation in format AMSBIB
\Bibitem{Nik23}
\by A.~K.~Nikolaev
\paper On the probabilistic representation of the resolvent of the two-dimensional Schr\"odinger operator
\inbook Probability and statistics. Part~35
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 526
\pages 140--158
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7384}
Linking options:
  • https://www.mathnet.ru/eng/znsl7384
  • https://www.mathnet.ru/eng/znsl/v526/p140
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :33
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024