Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 525, Pages 161–183 (Mi znsl7375)  

Moments of random integer partitions

Yu. V. Yakubovich

Saint Petersburg State University
References:
Abstract: We study the limiting behaviour of the $p$th moment, that is the sum of $p$th powers of parts in a partition of a positive integer $n$ which is taken uniformly among all partitions of $n$, as $n\to\infty$ and $p\in\mathbb{R}$ is fixed. We prove that after an appropriate centring and scaling, for $p\ge 1/2$ ($p\ne 1$) the limit distribution is Gaussian, while for $p<1/2$ the limit is some infinitely divisible distribution, depending on $p$, which we describe explicitly. In particular, for $p=0$ this is the Gumbel distribution, which is well known, and for $p=-1$ the limiting distribution is connected to the Jacobi theta function.
Key words and phrases: random integer partition, uniform measure on integer partitions, moments of integer partition, limit theorem, Jacobi theta distribution.
Funding agency Grant number
Russian Science Foundation 21-11-00141
Received: 25.09.2023
Document Type: Article
Language: Russian
Citation: Yu. V. Yakubovich, “Moments of random integer partitions”, Probability and statistics. Part 34, Zap. Nauchn. Sem. POMI, 525, POMI, St. Petersburg, 2023, 161–183
Citation in format AMSBIB
\Bibitem{Yak23}
\by Yu.~V.~Yakubovich
\paper Moments of random integer partitions
\inbook Probability and statistics. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 525
\pages 161--183
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7375}
Linking options:
  • https://www.mathnet.ru/eng/znsl7375
  • https://www.mathnet.ru/eng/znsl/v525/p161
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :31
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024