Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 525, Pages 51–70 (Mi znsl7367)  

Grassmann angles of infinite-dimensional cones

M. K. Dospolovaab

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Euler International Mathematical Institute, St. Petersburg
References:
Abstract: In 1985, B. S. Tsirelson discovered a deep connection between Gaussian processes and important geometric characteristics of a convex compact sets in an infinite-dimensional separable Hilbert space, called intrinsic volumes. F. Götze, Z. Kabluchko and D. N. Zaporozhets in their recent work (2021) presented a conic version of Tsirelson's theorem for Grassmann angles of finite-dimensional cones, which are analogues of intrinsic volumes, and also proved a theorem on the connection between the Grassmann angles of a positive hull of a set and the absorption probability of the convex hull of its Gaussian image. In this paper we prove a generalizations of the latter results to the case of infinite-dimensional cones in a separable Hilbert space.
Key words and phrases: Grassmann angles, cones, Gaussian image, absorption probability, intrinsic volumes, Sudakov's theorem, Tsirelson's theorem, $GB$-set, isonormal process.
Received: 17.10.2023
Document Type: Article
Language: Russian
Citation: M. K. Dospolova, “Grassmann angles of infinite-dimensional cones”, Probability and statistics. Part 34, Zap. Nauchn. Sem. POMI, 525, POMI, St. Petersburg, 2023, 51–70
Citation in format AMSBIB
\Bibitem{Dos23}
\by M.~K.~Dospolova
\paper Grassmann angles of infinite-dimensional cones
\inbook Probability and statistics. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 525
\pages 51--70
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7367}
Linking options:
  • https://www.mathnet.ru/eng/znsl7367
  • https://www.mathnet.ru/eng/znsl/v525/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :28
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024