Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 525, Pages 7–21 (Mi znsl7364)  

Power sum kernels in permutation learning

I. F. Azangulov, D. A. Eremeev

Saint Petersburg State University
References:
Abstract: In this paper, we consider the use of power sum kernels in solving the problem of permutation learning. We present a way to approximate a symmetrized kernel that naturally arises in this problem using the Monte Carlo method and estimate the convergence rate. We also touch on the problem of partial rankings and present some results for the case when the number of fixed elements is 1 or 2.
Key words and phrases: symmetric group, positive definite functions, covariance, kernel methods, modeling.
Funding agency Grant number
Russian Science Foundation 21-11-00047
Received: 07.10.2023
Document Type: Article
Language: Russian
Citation: I. F. Azangulov, D. A. Eremeev, “Power sum kernels in permutation learning”, Probability and statistics. Part 34, Zap. Nauchn. Sem. POMI, 525, POMI, St. Petersburg, 2023, 7–21
Citation in format AMSBIB
\Bibitem{AzaEre23}
\by I.~F.~Azangulov, D.~A.~Eremeev
\paper Power sum kernels in permutation learning
\inbook Probability and statistics. Part~34
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 525
\pages 7--21
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7364}
Linking options:
  • https://www.mathnet.ru/eng/znsl7364
  • https://www.mathnet.ru/eng/znsl/v525/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:42
    Full-text PDF :21
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024