|
Zapiski Nauchnykh Seminarov POMI, 2023, Volume 524, Pages 74–93
(Mi znsl7357)
|
|
|
|
$\mathrm{SDD}_1$ matrices and their generalizations
L. Yu. Kolotilina St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Abstract:
The paper considers the classes of $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices, which contain the class of $\mathrm{SDD}$ (strictly diagonally dominant) matrices and are contained in the class of nonsingular $\mathcal{H}$-matrices. New upper bounds on $\|A^{-1}\|_\infty$ for $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices $A$, generalizing known upper bounds for $S$-$\mathrm{SDD}$, $\mathrm{SDD}_1^*$, and $\mathrm{GSDD}_1$ matrices, are established and compared.
Key words and phrases:
$l_\infty$-norm of the inverse, upper bounds, $\mathrm{SDD}_1$ matrices, $\mathrm{SDD}_1^*$ matrices, $\mathrm{GSDD}_1$ matrices, $\mathrm{GSDD}_1^*$ matrices, $SD$-$\mathrm{SDD}$ matrices, $\mathcal H$-matrices.
Received: 03.11.2023
Citation:
L. Yu. Kolotilina, “$\mathrm{SDD}_1$ matrices and their generalizations”, Computational methods and algorithms. Part XXXVI, Zap. Nauchn. Sem. POMI, 524, POMI, St. Petersburg, 2023, 74–93
Linking options:
https://www.mathnet.ru/eng/znsl7357 https://www.mathnet.ru/eng/znsl/v524/p74
|
Statistics & downloads: |
Abstract page: | 49 | Full-text PDF : | 15 | References: | 20 |
|