|
Zapiski Nauchnykh Seminarov POMI, 2023, Volume 524, Pages 56–63
(Mi znsl7355)
|
|
|
|
Upper bounds for the spectral radius of a PF matrix
L. Yu. Kolotilina St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Abstract:
The paper suggests and illustrates a simple unified approach to deriving upper bounds for the dominant eigenvalues of the so-called PF matrices (or matrices with the Perron–Frobenius property) from those for the Perron root of a nonnegative matrix.
Key words and phrases:
spectral radius, nonnegative matrices, Perron root, Perron–Frobenius property, dominant eigenvalue, upper bounds.
Received: 06.04.2023
Citation:
L. Yu. Kolotilina, “Upper bounds for the spectral radius of a PF matrix”, Computational methods and algorithms. Part XXXVI, Zap. Nauchn. Sem. POMI, 524, POMI, St. Petersburg, 2023, 56–63
Linking options:
https://www.mathnet.ru/eng/znsl7355 https://www.mathnet.ru/eng/znsl/v524/p56
|
Statistics & downloads: |
Abstract page: | 52 | Full-text PDF : | 32 | References: | 22 |
|