Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 523, Pages 121–134 (Mi znsl7347)  

Rank $2$ vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ and quadratic forms

V. M. Polyakov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We study the action of the group $\mathrm{SL}_2(\mathbb{Z})$ on $\mathrm{Ext}^1(\mathcal{O}(2),\mathcal{O}(-2))$ and on isomorphism classes of vector bundles on $\mathbb {P}^1_{\mathbb{Z}}$ of rank $2$ with a trivial generic fiber and simple jumps. It is proved that such bundles are equivariant under the action of this group. The concept of a rigged bundle is introduced and studied. It is shown that the group of isomorphism classes of rigged bundles of rank $2$ with a trivial generic fiber and simple jumps is isomorphic to the $2$-torsion quotient of the class group of binary quadratic forms of the corresponding discriminant up to a $\mathbb{Z}/2$ factor.
Key words and phrases: vector bundle, arithmetic surface, projective line, jumps.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-289
Received: 25.10.2023
Document Type: Article
UDC: 512.72
Language: Russian
Citation: V. M. Polyakov, “Rank $2$ vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ and quadratic forms”, Algebra and number theory. Part 6, Zap. Nauchn. Sem. POMI, 523, POMI, St. Petersburg, 2023, 121–134
Citation in format AMSBIB
\Bibitem{Pol23}
\by V.~M.~Polyakov
\paper Rank $2$ vector bundles on $\mathbb{P}^1_{\mathbb{Z}}$ and quadratic forms
\inbook Algebra and number theory. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 523
\pages 121--134
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7347}
Linking options:
  • https://www.mathnet.ru/eng/znsl7347
  • https://www.mathnet.ru/eng/znsl/v523/p121
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :22
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024