Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 523, Pages 83–120 (Mi znsl7346)  

Self-similarity and substitutions of the karyon tilings

V. G. Zhuravlev

Vladimir State University
References:
Abstract: Self-similar karyon partitions $\mathcal{T}(\mathbf{m},v)$ with parameters the weight vector $\mathbf{m}$ and the star $v$ are considered. The star $v$ defines the geometry of the parallelepipeds of which the tiling consists of and the weight vector $\mathbf{m}$ sets local rules and periodicity of $\mathcal{T}(\mathbf{m},v)$. A deflation $\bigtriangleup:\mathcal{T}(\mathbf{m},v) \longrightarrow \mathcal{T}^{\bigtriangleup}(\mathbf{m},v)$ is being built, where $\mathcal{T}^{\bigtriangleup}(\mathbf{m},v)=A\mathcal{T}(\mathbf{m},v)$, and $A$ is an affine mapping of the space $\mathbb{R}^{d}$. Deflation replaces the basic polyhedra forming the tiling $\mathcal{T}(\mathbf{m},v)$ by smaller polyhedra. This is the main idea of multidimensional approximations by continued fractions.
Key words and phrases: multidimensional continued fractions, polyhedral karyon tilings, deflation.
Received: 30.05.2023
Document Type: Article
UDC: 511.9
Language: Russian
Citation: V. G. Zhuravlev, “Self-similarity and substitutions of the karyon tilings”, Algebra and number theory. Part 6, Zap. Nauchn. Sem. POMI, 523, POMI, St. Petersburg, 2023, 83–120
Citation in format AMSBIB
\Bibitem{Zhu23}
\by V.~G.~Zhuravlev
\paper Self-similarity and substitutions of the karyon tilings
\inbook Algebra and number theory. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 523
\pages 83--120
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7346}
Linking options:
  • https://www.mathnet.ru/eng/znsl7346
  • https://www.mathnet.ru/eng/znsl/v523/p83
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024