Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 523, Pages 19–38 (Mi znsl7343)  

Generalized Gauss decompositions of simple algebraic groups

N. L. Gordeev

Herzen State Pedagogical University of Russia, Department of Mathematics
References:
Abstract: Let $\mathcal G$ be a simple algebraic group which is defined and split over a field $K$ and which corresponds to an irreducible root system $R$. Further, let $G = \mathcal G(K)$ be the group of $K$-points. We say that the group $G$ has an $M$-decomposition, where $M \subset R$, if every element of the subset $\prod_{\beta \in R\setminus M} X_\beta\cdot T\cdot \prod_{\alpha\in M}X_\alpha$, where $X_\beta, X_\alpha$ are root subgroups and $T$ is the group of $K$-points of a maximal split torus, can be represented uniquely as products of eleements of root subgroups and the group $T$. Moreover, we assume here that the order of the multiplication of elements of groups $X_\beta$ and $X_\alpha$ is fixed. If such a decomposition holds for every fixed order of the multiplication of elements of groups $\{X_\beta\}_{\beta \in R\setminus M}, \{X_\alpha\}_{\alpha \in M}$, we say that the group $G$ has the universal $M$-decomposition. The important example of the universal $M$-decomposition является is the classical Gauss decomposition where $M = R^+$ is the set of positive roots.
In this paper we consider the examples of $M$-decompositions, which appear when we deal with parabolic subgroups of $\mathcal G$. Moreover, for groups of types $A_2, B_2$ we construct the identities which are obstacles to a construction of universal $M$-decomposition for some subsets $M\subset R$.
Key words and phrases: imple algebraic grous, Big Gauss Cell, Gauss decompositions, closed sets of roots.
Received: 26.09.2023
Document Type: Article
UDC: 512.74
Language: Russian
Citation: N. L. Gordeev, “Generalized Gauss decompositions of simple algebraic groups”, Algebra and number theory. Part 6, Zap. Nauchn. Sem. POMI, 523, POMI, St. Petersburg, 2023, 19–38
Citation in format AMSBIB
\Bibitem{Gor23}
\by N.~L.~Gordeev
\paper Generalized Gauss decompositions of simple algebraic groups
\inbook Algebra and number theory. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 523
\pages 19--38
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7343}
Linking options:
  • https://www.mathnet.ru/eng/znsl7343
  • https://www.mathnet.ru/eng/znsl/v523/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024