|
Zapiski Nauchnykh Seminarov POMI, 2004, Volume 315, Pages 5–38
(Mi znsl734)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Approximation by M. Riesz's kernels in $L^p$ for $p<1$
A. B. Aleksandrov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $\alpha>0$. We consider the linear span ${\mathfrak X}_\alpha(\mathbb R^n)$ of scalar Riesz's kernels $\{\frac1{|x-a|^\alpha}\}_{a\in\mathbb R^n}$ and the linear span ${\mathfrak Y}_\alpha(\mathbb R^n)$ of vector Riesz's kernels $\{\frac1{|x-a|^{\alpha+1}}(x-a)\}_{a\in\mathbb R^n}$. We deal with the following questions.
1. When is the intersection ${\mathfrak X}_\alpha(\mathbb R^n)\cap
L^p(\mathbb R^n)$ dense in $L^p(\mathbb R^n)$?
2. When is the intersection ${\mathfrak Y}_\alpha(\mathbb R^n)\cap
L^p(\mathbb R^n,\mathbb R^n)$ dense in $L^p(\mathbb R^n,\mathbb R^n)$?
Received: 20.06.2004
Citation:
A. B. Aleksandrov, “Approximation by M. Riesz's kernels in $L^p$ for $p<1$”, Investigations on linear operators and function theory. Part 32, Zap. Nauchn. Sem. POMI, 315, POMI, St. Petersburg, 2004, 5–38; J. Math. Sci. (N. Y.), 134:4 (2006), 2239–2257
Linking options:
https://www.mathnet.ru/eng/znsl734 https://www.mathnet.ru/eng/znsl/v315/p5
|
Statistics & downloads: |
Abstract page: | 333 | Full-text PDF : | 79 | References: | 64 |
|