Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 315, Pages 5–38 (Mi znsl734)  

This article is cited in 1 scientific paper (total in 1 paper)

Approximation by M. Riesz's kernels in $L^p$ for $p<1$

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (349 kB) Citations (1)
References:
Abstract: Let $\alpha>0$. We consider the linear span ${\mathfrak X}_\alpha(\mathbb R^n)$ of scalar Riesz's kernels $\{\frac1{|x-a|^\alpha}\}_{a\in\mathbb R^n}$ and the linear span ${\mathfrak Y}_\alpha(\mathbb R^n)$ of vector Riesz's kernels $\{\frac1{|x-a|^{\alpha+1}}(x-a)\}_{a\in\mathbb R^n}$. We deal with the following questions.
1. When is the intersection ${\mathfrak X}_\alpha(\mathbb R^n)\cap L^p(\mathbb R^n)$ dense in $L^p(\mathbb R^n)$?
2. When is the intersection ${\mathfrak Y}_\alpha(\mathbb R^n)\cap L^p(\mathbb R^n,\mathbb R^n)$ dense in $L^p(\mathbb R^n,\mathbb R^n)$?
Received: 20.06.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 134, Issue 4, Pages 2239–2257
DOI: https://doi.org/10.1007/s10958-006-0098-6
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. B. Aleksandrov, “Approximation by M. Riesz's kernels in $L^p$ for $p<1$”, Investigations on linear operators and function theory. Part 32, Zap. Nauchn. Sem. POMI, 315, POMI, St. Petersburg, 2004, 5–38; J. Math. Sci. (N. Y.), 134:4 (2006), 2239–2257
Citation in format AMSBIB
\Bibitem{Ale04}
\by A.~B.~Aleksandrov
\paper Approximation by M.~Riesz's kernels in $L^p$ for $p<1$
\inbook Investigations on linear operators and function theory. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 315
\pages 5--38
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl734}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2114011}
\zmath{https://zbmath.org/?q=an:1073.41024}
\elib{https://elibrary.ru/item.asp?id=9129793}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 134
\issue 4
\pages 2239--2257
\crossref{https://doi.org/10.1007/s10958-006-0098-6}
\elib{https://elibrary.ru/item.asp?id=13522942}
Linking options:
  • https://www.mathnet.ru/eng/znsl734
  • https://www.mathnet.ru/eng/znsl/v315/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:333
    Full-text PDF :79
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024