Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 521, Pages 240–258 (Mi znsl7332)  

The Riemann–Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential

V. V. Sukhanov

V. A. Fock Institute of Physics, Saint-Petersburg State University
References:
Abstract: The paper is devoted to the study of the Riemann–Hilbert problem for the Schrodinger operator $L=-\frac{d^2}{dx^2}-\frac{x^2}{4}+q(x)$ with a potential as the sum of a parabola (with branches down) and a smooth finite potential $q(x)$. The constructed Riemann–Hilbert problem can be considered as a construction of a direct scattering problem for a given operator.
Key words and phrases: one-dimensional Schrodinger operator, inverse problem, Riemann-Hilbert problem, singular integral equation.
Funding agency Grant number
Russian Science Foundation 22-11-00070
Received: 29.09.2023
Document Type: Article
UDC: 517.928.2
Language: Russian
Citation: V. V. Sukhanov, “The Riemann–Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential”, Mathematical problems in the theory of wave propagation. Part 53, Zap. Nauchn. Sem. POMI, 521, POMI, St. Petersburg, 2023, 240–258
Citation in format AMSBIB
\Bibitem{Suk23}
\by V.~V.~Sukhanov
\paper The Riemann--Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential
\inbook Mathematical problems in the theory of wave propagation. Part~53
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 521
\pages 240--258
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7332}
Linking options:
  • https://www.mathnet.ru/eng/znsl7332
  • https://www.mathnet.ru/eng/znsl/v521/p240
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :29
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024