Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 521, Pages 212–239 (Mi znsl7331)  

Homogenization of a one-dimensional fourth-order periodic operator with a singular potential

A. A. Raeva, V. A. Sloushchb, T. A. Suslinab

a Institute for Theoretical and Mathematical Physics of Lomonosov Moscow State University
b Saint Petersburg State University
References:
Abstract: In $L_2(\mathbb{R})$, we consider a fourth-order differential operator $B_{\varepsilon}$ of the form $B_{\varepsilon} = \frac{d^4}{dx^4} + \varepsilon^{-4} V({x}/\varepsilon)$, where $V(x)$ is a real-valued $1$-periodic function belonging to $L_{2, \operatorname{loc}}(\mathbb{R})$, and $\varepsilon >0$ is a small parameter. It is assumed that the point $\lambda_0 =0$ is the lower edge of the spectrum of the operator $B = \frac{d^4}{dx^4} + V({x})$ and the first band function $E_1(k)$ of the operator $B$ on the period $k \in [-\pi, \pi)$ reaches a minimum at exactly two points $\pm k_0$, $0< k_0 <\pi$, and behaves like $g^{(1)}(k \mp k_0)^2$, $g^{(1)} >0$, near these points. The behavior of the resolvent $(B_{\varepsilon} + I)^{-1}$ for small $\varepsilon$ is studied. We obtain approximation for this resolvent in the operator norm with an error $O(\varepsilon^2)$. The approximation is described in terms of the spectral characteristics of the operator $B$ at the bottom of the spectrum.
Key words and phrases: periodic differential operators, homogenization, operator error estimates.
Funding agency Grant number
Russian Science Foundation 22-11-00092
Received: 04.10.2023
Document Type: Article
UDC: 517.928
Language: Russian
Citation: A. A. Raev, V. A. Sloushch, T. A. Suslina, “Homogenization of a one-dimensional fourth-order periodic operator with a singular potential”, Mathematical problems in the theory of wave propagation. Part 53, Zap. Nauchn. Sem. POMI, 521, POMI, St. Petersburg, 2023, 212–239
Citation in format AMSBIB
\Bibitem{RaeSloSus23}
\by A.~A.~Raev, V.~A.~Sloushch, T.~A.~Suslina
\paper Homogenization of a one-dimensional fourth-order periodic operator with a singular potential
\inbook Mathematical problems in the theory of wave propagation. Part~53
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 521
\pages 212--239
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7331}
Linking options:
  • https://www.mathnet.ru/eng/znsl7331
  • https://www.mathnet.ru/eng/znsl/v521/p212
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:77
    Full-text PDF :39
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024