Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 316, Pages 205–223 (Mi znsl733)  

This article is cited in 2 scientific papers (total in 2 papers)

On infinite real trace rational languages of maximum topological complexity

O. Finkela, J.-P. Ressayrea, P. Simonnetb

a Université Paris VII – Denis Diderot
b Université de Corse Pasquale Paoli
Full-text PDF (235 kB) Citations (2)
References:
Abstract: We consider the set $\mathbb R^{\omega}(\Gamma,D)$ of infinite real traces, over a dependence alphabet $(\Gamma,D)$ with no isolated letter, equipped with the topology induced by the prefix metric. We then prove that all rational languages of infinite real traces are analytic sets. We reprove also that there exist some rational languages of infinite real traces which are analytic but non Borel sets, and even ${\boldsymbol{\Sigma}}^1_1$-complete, hence of maximum possible topological complexity. For that purpose we give an example of $\boldsymbol{\Sigma}^1_1$-complete language which is fundamentally different from the known example of $\boldsymbol{\Sigma}^1_1$-complete infinitary rational relation given in [10].
Received: 26.10.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 134, Issue 5, Pages 2435–2444
DOI: https://doi.org/10.1007/s10958-006-0120-z
Bibliographic databases:
UDC: 510.52+519.16
Language: English
Citation: O. Finkel, J.-P. Ressayre, P. Simonnet, “On infinite real trace rational languages of maximum topological complexity”, Computational complexity theory. Part IX, Zap. Nauchn. Sem. POMI, 316, POMI, St. Petersburg, 2004, 205–223; J. Math. Sci. (N. Y.), 134:5 (2006), 2435–2444
Citation in format AMSBIB
\Bibitem{FinResSim04}
\by O.~Finkel, J.-P.~Ressayre, P.~Simonnet
\paper On infinite real trace rational languages of maximum topological complexity
\inbook Computational complexity theory. Part~IX
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 316
\pages 205--223
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl733}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2113065}
\zmath{https://zbmath.org/?q=an:1136.68419}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 134
\issue 5
\pages 2435--2444
\crossref{https://doi.org/10.1007/s10958-006-0120-z}
Linking options:
  • https://www.mathnet.ru/eng/znsl733
  • https://www.mathnet.ru/eng/znsl/v316/p205
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :66
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024