Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 521, Pages 123–135 (Mi znsl7327)  

Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elôstic membranes

M. A. Lyalinov

Saint Petersburg State University
References:
Abstract: In this work we compute the eigenfunctions of the continuous (essential) spectrum in the form of the Sommerfeld integral. The eigenfunctions are localised near the membranes and can be interpreted as incoming and outgoing surface waves.
Key words and phrases: eigenfunctions, essential spectrum, wedge, functional equations,thin membranes.
Funding agency Grant number
Russian Science Foundation 22-11-00070
Received: 22.09.2023
Document Type: Article
UDC: 517.9, 517.4
Language: Russian
Citation: M. A. Lyalinov, “Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elôstic membranes”, Mathematical problems in the theory of wave propagation. Part 53, Zap. Nauchn. Sem. POMI, 521, POMI, St. Petersburg, 2023, 123–135
Citation in format AMSBIB
\Bibitem{Lya23}
\by M.~A.~Lyalinov
\paper Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elôstic membranes
\inbook Mathematical problems in the theory of wave propagation. Part~53
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 521
\pages 123--135
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7327}
Linking options:
  • https://www.mathnet.ru/eng/znsl7327
  • https://www.mathnet.ru/eng/znsl/v521/p123
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Çàïèñêè íàó÷íûõ ñåìèíàðîâ ÏÎÌÈ
    Statistics & downloads:
    Abstract page:33
    Full-text PDF :18
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024