Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 521, Pages 33–53 (Mi znsl7322)  

This article is cited in 1 scientific paper (total in 1 paper)

A functional model of a class of symmetric semi-bounded operators

M. I. Belisheva, S. A. Simonovabc

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
b Saint Petersburg State University
c Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg
Full-text PDF (254 kB) Citations (1)
References:
Abstract: Let $L_0$ be a closed symmetric positive definite operator with nonzero defect indices $n_\pm(L_0)$ in a separable Hilbert space ${\mathscr H}$. It determines a family of dynamical systems $\alpha^T$, $T>0$, of the form
\begin{align*} & u''(t)+L_0^*u(t) = 0 && {\rm in } {{\mathscr H}}, 0<t<T,\\ & u(0)=u'(0)=0 && {\rm in } {{\mathscr H}},\\ & \Gamma_1 u(t) = f(t), &&0\leqslant t \leqslant T, \end{align*}
where $\{{\mathscr H};\Gamma_1,\Gamma_2\}$ ($\Gamma_{1,2}:{\mathscr H}\to{\rm Ker } L_0^*$) is the canonical (Vishik) boundary triple for $L_0$, $f$ is a boundary control (${\rm Ker } L_0^*$-valued function of $t$) and $u=u^f(t)$ is the solution (trajectory).
Let $L_0$ be completely non-self-adjoint and $n_\pm(L_0)=1$, so that $f(t)=\phi(t)e$ with a scalar function $\phi\in {L_2(0,T)}$ and $e\in{\rm Ker } L_0^*$. Let the map $W^T: \phi\mapsto u^f(T)$ be such that $C^T=(W^T)^*W^T=\mathbb I+K^T$ with an integral operator $K^T$ in ${L_2(0,T)}$ which has a smooth kernel. Assume that $C^T$ an isomorphism in ${L_2(0,T)}$ for all $T>0$. We show that under these assumptions the operator $L_0$ is unitarily equivalent to the minimal Schrödinger operator $S_0=-D^2+q$ in ${L_2(0,\infty)}$ with a smooth real-valued potential $q$, which is in the limit point case at infinity. It is also proved that $S_0$ provides a canonical wave model of $L_0$.
Key words and phrases: functional model, Vishik decomposition, boundary triple, one-dimensional Schrödinger operator, dynamical system with boundary control.
Received: 30.09.2023
Document Type: Article
UDC: 517.951
Language: Russian
Citation: M. I. Belishev, S. A. Simonov, “A functional model of a class of symmetric semi-bounded operators”, Mathematical problems in the theory of wave propagation. Part 53, Zap. Nauchn. Sem. POMI, 521, POMI, St. Petersburg, 2023, 33–53
Citation in format AMSBIB
\Bibitem{BelSim23}
\by M.~I.~Belishev, S.~A.~Simonov
\paper A functional model of a class of symmetric semi-bounded operators
\inbook Mathematical problems in the theory of wave propagation. Part~53
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 521
\pages 33--53
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7322}
Linking options:
  • https://www.mathnet.ru/eng/znsl7322
  • https://www.mathnet.ru/eng/znsl/v521/p33
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :20
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024