Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2023, Volume 521, Pages 8–32 (Mi znsl7321)  

This article is cited in 1 scientific paper (total in 1 paper)

Wave propagation in abstract dynamical system with boundary control

M. I. Belishev

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $L_0$ be a positive definite operator in a Hilbert space $\mathscr H$ with the defect indexes $n_\pm\geqslant 1$ and let $\{{\rm Ker }L^*_0;\Gamma_1,\Gamma_2\}$ be its canonical (by M. I. Vishik) boundary triple. The paper deals with an evolutionary dynamical system of the form
\begin{align*} & u_{tt}+{L_0^*} u=0 &&\text{in}\quad {\mathscr H}, t>0;\\ & u\big|_{t=0}=u_t\big|_{t=0}=0 && {\rm in }\quad {\mathscr H};\\ & \Gamma_1 u=f(t), && t\geqslant 0, \end{align*}
where $f$ is a boundary control (a ${\rm Ker }L^*_0$-valued function of time), $u=u^f(t)$ is a trajectory. Some of the general properties of such systems are considered. An abstract analog of the finiteness principle of wave propagation speed is revealed.
Key words and phrases: symmetric semi-bounded operator, Vishik boundary triple, dynamic system with boundary control, finiteness of wave propagation speed.
Received: 27.07.2023
Document Type: Article
UDC: 517.983.2
Language: Russian
Citation: M. I. Belishev, “Wave propagation in abstract dynamical system with boundary control”, Mathematical problems in the theory of wave propagation. Part 53, Zap. Nauchn. Sem. POMI, 521, POMI, St. Petersburg, 2023, 8–32
Citation in format AMSBIB
\Bibitem{Bel23}
\by M.~I.~Belishev
\paper Wave propagation in abstract dynamical system with boundary control
\inbook Mathematical problems in the theory of wave propagation. Part~53
\serial Zap. Nauchn. Sem. POMI
\yr 2023
\vol 521
\pages 8--32
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7321}
Linking options:
  • https://www.mathnet.ru/eng/znsl7321
  • https://www.mathnet.ru/eng/znsl/v521/p8
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :19
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024