|
Zapiski Nauchnykh Seminarov POMI, 2023, Volume 520, Pages 227–238
(Mi znsl7319)
|
|
|
|
Polynomial structure in determinants for Izergin–Korepin partition function
A. G. Pronko, V. O. Tarasov Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
Abstract:
We discuss determinant formulas for the partition function of the six-vertex model with domain wall boundary conditions, which are parametrized by an arbitrary basis of polynomials. In this note we show that our recent result on this problem admits a one-parameter extension.
Key words and phrases:
Bethe ansatz, vertex models, domain wall boundary conditions, determinant representations.
Received: 02.07.2023
Citation:
A. G. Pronko, V. O. Tarasov, “Polynomial structure in determinants for Izergin–Korepin partition function”, Questions of quantum field theory and statistical physics. Part 29, Zap. Nauchn. Sem. POMI, 520, POMI, St. Petersburg, 2023, 227–238
Linking options:
https://www.mathnet.ru/eng/znsl7319 https://www.mathnet.ru/eng/znsl/v520/p227
|
Statistics & downloads: |
Abstract page: | 52 | Full-text PDF : | 19 | References: | 25 |
|