|
Zapiski Nauchnykh Seminarov POMI, 2023, Volume 520, Pages 50–123
(Mi znsl7313)
|
|
|
|
Baxter $Q$-operators in Ruijsenaars–Sutherland hyperbolic systems: one- and two-particle cases
N. Belousova, S. Derkachova, S. Kharchevbc, S. Khoroshkincd a Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, Russia
b National Research Center “Kurchatov Institute”
c Institute for Information Transmission Problems RAS (Kharkevich Institute), Bolshoy Karetny per. 19, Moscow, 127994, Russia
d National Research University Higher School of Economics
Abstract:
In these notes we review the technique of Baxter $Q$-operators in the Ruijsenaars-Sutherland hyperbolic systems in the cases of one and two particles. Using these operators we show in particular that eigenfunctions of these systems admit two dual integral representations and prove their orthogonality and completeness.
Key words and phrases:
Ruijsenaars, Sutherland, Calogero, Baxter $Q$-operator, eigenfunctions, orthogonality, completeness.
Received: 03.07.2023
Citation:
N. Belousov, S. Derkachov, S. Kharchev, S. Khoroshkin, “Baxter $Q$-operators in Ruijsenaars–Sutherland hyperbolic systems: one- and two-particle cases”, Questions of quantum field theory and statistical physics. Part 29, Zap. Nauchn. Sem. POMI, 520, POMI, St. Petersburg, 2023, 50–123
Linking options:
https://www.mathnet.ru/eng/znsl7313 https://www.mathnet.ru/eng/znsl/v520/p50
|
Statistics & downloads: |
Abstract page: | 91 | Full-text PDF : | 53 | References: | 18 |
|