Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 519, Pages 229–263 (Mi znsl7308)  

Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class

M. D. Surnachev

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
References:
Abstract: For a second order linear elliptic equation with uniformly elliptic principal part in divergence form and drift from a Kato–Stummel type class we establish the unique solvability and estimates of solutions of the corresponding noncoercive Dirichlet problem.
Key words and phrases: noncoercive Dirichlet problem, Kato–Stummel classes, unique solvability, stationary convection-diffusion equation, drift.
Received: 01.12.2022
Document Type: Article
UDC: 517
Language: Russian
Citation: M. D. Surnachev, “Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class”, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Zap. Nauchn. Sem. POMI, 519, POMI, St. Petersburg, 2022, 229–263
Citation in format AMSBIB
\Bibitem{Sur22}
\by M.~D.~Surnachev
\paper Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~50
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 519
\pages 229--263
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7308}
Linking options:
  • https://www.mathnet.ru/eng/znsl7308
  • https://www.mathnet.ru/eng/znsl/v519/p229
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:77
    Full-text PDF :39
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024