Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 519, Pages 114–151 (Mi znsl7304)  

This article is cited in 1 scientific paper (total in 1 paper)

Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm

A. A. Mishulovich, V. A. Sloushch, T. A. Suslina

Saint Petersburg State University
Full-text PDF (615 kB) Citations (1)
References:
Abstract: In $L_2(\mathbb{R})$, we consider an elliptic second-order differential operator $A_{\varepsilon}$, $\varepsilon >0$, given by $A_{\varepsilon} = - \frac{d}{dx} g(x/\varepsilon) \frac{d}{dx} + \varepsilon^{-2} p({x}/\varepsilon)$, with periodic coefficients. For small $\varepsilon$, we study the behavior of the resolvent of $A_{\varepsilon}$ in a regular point close to the edge of a spectral gap. We obtain approximation of this resolvent in the “energy” norm with error $O(\varepsilon)$. Approximation is described in terms of the spectral characteristics of the operator at the edge of the gap.
Key words and phrases: periodic differential operators, spectral gap, homogenization, effective operator, corrector, operator error estimates.
Funding agency Grant number
Russian Science Foundation 22-11-00092
Received: 29.10.2022
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: A. A. Mishulovich, V. A. Sloushch, T. A. Suslina, “Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm”, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Zap. Nauchn. Sem. POMI, 519, POMI, St. Petersburg, 2022, 114–151
Citation in format AMSBIB
\Bibitem{MisSloSus22}
\by A.~A.~Mishulovich, V.~A.~Sloushch, T.~A.~Suslina
\paper Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~50
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 519
\pages 114--151
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4545353}
Linking options:
  • https://www.mathnet.ru/eng/znsl7304
  • https://www.mathnet.ru/eng/znsl/v519/p114
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :35
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024