Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 518, Pages 152–172 (Mi znsl7296)  

On WL-rank and WL-dimension of some Deza dihedrants

G. K. Ryabova, L. V. Shalaginovb

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Chelyabinsk State University, Chelyabinsk, Russia
References:
Abstract: The WL-rank of a graph $\Gamma$ is defined to be the rank of the coherent configuration of $\Gamma$. The WL-dimension of $\Gamma$ is defined to be the smallest positive integer $m$ for which $\Gamma$ is identified by the $m$-dimensional Weisfeiler-Leman algorithm. We present some families of strictly Deza dihedrants of WL-rank $4$ or $5$ and WL-dimension $2$. Computer calculations show that every strictly Deza dihedrant with at most $59$ vertices is circulant or belongs to one of the above families. We also construct a new infinite family of strictly Deza dihedrants whose WL-rank is a linear function of the number of vertices.
Key words and phrases: WL-rank, WL-dimension, Deza graphs, Cayley graphs, dihedral group.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0002
The first author is supported by RAS Fundamental Research Program, project FWNF-2022-0002.
Received: 26.09.2022
Document Type: Article
UDC: 519.175.1, 512.542
Language: English
Citation: G. K. Ryabov, L. V. Shalaginov, “On WL-rank and WL-dimension of some Deza dihedrants”, Combinatorics and graph theory. Part XIII, Zap. Nauchn. Sem. POMI, 518, POMI, St. Petersburg, 2022, 152–172
Citation in format AMSBIB
\Bibitem{RyaSha22}
\by G.~K.~Ryabov, L.~V.~Shalaginov
\paper On WL-rank and WL-dimension of some Deza dihedrants
\inbook Combinatorics and graph theory. Part~XIII
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 518
\pages 152--172
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7296}
Linking options:
  • https://www.mathnet.ru/eng/znsl7296
  • https://www.mathnet.ru/eng/znsl/v518/p152
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:51
    Full-text PDF :10
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024