Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 518, Pages 114–123 (Mi znsl7294)  

Restriction on minimum degree in the contractible sets problem

N. A. Karol

Saint Petersburg State University
References:
Abstract: Let $G$ be a $3$-connected graph. A set $W \subset V(G)$ is contractible if $G(W)$ is connected and $G - W$ is a $2$-connected graph. In 1994, McCuaig and Ota formulated the conjecture that, for any $k \in \mathbb{N}$, there exists $m \in \mathbb{N}$ such that any $3$-connected graph $G$ with $v(G) \geqslant m$ has a $k$-vertex contractible set. In this paper we prove that, for any $k \geqslant 5$, the assertion of the conjecture holds if $\delta(G) \geqslant \left[ \frac{2k + 1}{3} \right] + 2$.
Key words and phrases: connectivity, $3$-connected graph, contractible subgraph.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-287
The work is supported by Ministry of Science and Higher Education of the Russian Federation, agreement No. 075-15-2022-287.
Received: 28.11.2022
Document Type: Article
UDC: 519.173.1
Language: English
Citation: N. A. Karol, “Restriction on minimum degree in the contractible sets problem”, Combinatorics and graph theory. Part XIII, Zap. Nauchn. Sem. POMI, 518, POMI, St. Petersburg, 2022, 114–123
Citation in format AMSBIB
\Bibitem{Kar22}
\by N.~A.~Karol
\paper Restriction on minimum degree in the contractible sets problem
\inbook Combinatorics and graph theory. Part~XIII
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 518
\pages 114--123
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7294}
Linking options:
  • https://www.mathnet.ru/eng/znsl7294
  • https://www.mathnet.ru/eng/znsl/v518/p114
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :9
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024