Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 518, Pages 94–113 (Mi znsl7293)  

On the chromatic numbers of $3$-dimensional slices

V. A. Voronovab, A. Ya. Kanel-Belovb, G. A. Strukovc, D. D. Cherkashind

a Caucasus Mathematical Center, Adyghe State University, Maikop
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
d Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
References:
Abstract: We prove that for an arbitrary $\varepsilon > 0$ holds
$$ \chi (\mathbb{R}^3 \times [0,\varepsilon]^6) \geq 10, $$
where $\chi(M)$ stands for the chromatic number of an (infinite) graph with the vertex set $M$ and the edge set consists of pairs of points at the distance $1$ apart.
Key words and phrases: distance graphs, chromatic number of space.
Funding agency Grant number
Russian Science Foundation 22-11-00177
Received: 01.12.2022
Document Type: Article
UDC: 514.17, 519.174, 515.124.3
Language: Russian
Citation: V. A. Voronov, A. Ya. Kanel-Belov, G. A. Strukov, D. D. Cherkashin, “On the chromatic numbers of $3$-dimensional slices”, Combinatorics and graph theory. Part XIII, Zap. Nauchn. Sem. POMI, 518, POMI, St. Petersburg, 2022, 94–113
Citation in format AMSBIB
\Bibitem{VorKanStr22}
\by V.~A.~Voronov, A.~Ya.~Kanel-Belov, G.~A.~Strukov, D.~D.~Cherkashin
\paper On the chromatic numbers of $3$-dimensional slices
\inbook Combinatorics and graph theory. Part~XIII
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 518
\pages 94--113
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7293}
Linking options:
  • https://www.mathnet.ru/eng/znsl7293
  • https://www.mathnet.ru/eng/znsl/v518/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :36
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024