|
Zapiski Nauchnykh Seminarov POMI, 2022, Volume 518, Pages 94–113
(Mi znsl7293)
|
|
|
|
On the chromatic numbers of $3$-dimensional slices
V. A. Voronovab, A. Ya. Kanel-Belovb, G. A. Strukovc, D. D. Cherkashind a Caucasus Mathematical Center, Adyghe State University, Maikop
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
c St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
d Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Abstract:
We prove that for an arbitrary $\varepsilon > 0$ holds
$$
\chi (\mathbb{R}^3 \times [0,\varepsilon]^6) \geq 10,
$$
where $\chi(M)$ stands for the chromatic number of an (infinite) graph with the vertex set $M$ and the edge set consists of pairs of points at the distance $1$ apart.
Key words and phrases:
distance graphs, chromatic number of space.
Received: 01.12.2022
Citation:
V. A. Voronov, A. Ya. Kanel-Belov, G. A. Strukov, D. D. Cherkashin, “On the chromatic numbers of $3$-dimensional slices”, Combinatorics and graph theory. Part XIII, Zap. Nauchn. Sem. POMI, 518, POMI, St. Petersburg, 2022, 94–113
Linking options:
https://www.mathnet.ru/eng/znsl7293 https://www.mathnet.ru/eng/znsl/v518/p94
|
Statistics & downloads: |
Abstract page: | 91 | Full-text PDF : | 36 | References: | 21 |
|