Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2004, Volume 316, Pages 129–146 (Mi znsl729)  

This article is cited in 8 scientific papers (total in 8 papers)

Intuitionistic frege systems are polynomially equivalent

G. Mintsa, A. A. Kojevnikovb

a Department of Philosophy, Stanford University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (215 kB) Citations (8)
References:
Abstract: As shown in [3], any two classical Frege systems polynomially simulate each other. The same proof does not work for the intuitionistic Frege systems, since they can have non-derivable admissible rules. (The rule $A/B$ is derivable if formula $A\to B$ is derivable. The rule $A/B$ is admissible if for all substitutions $\sigma$ if $\sigma(A)$ is derivable then $\sigma(B)$ is derivable). In this paper we polynomially simulate a single admissible rule and show that any two intuitionistic Frege systems polynomially simulate each other.
Received: 05.12.2004
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 134, Issue 5, Pages 2392–2402
DOI: https://doi.org/10.1007/s10958-006-0116-8
Bibliographic databases:
UDC: 510.531+510.642
Language: English
Citation: G. Mints, A. A. Kojevnikov, “Intuitionistic frege systems are polynomially equivalent”, Computational complexity theory. Part IX, Zap. Nauchn. Sem. POMI, 316, POMI, St. Petersburg, 2004, 129–146; J. Math. Sci. (N. Y.), 134:5 (2006), 2392–2402
Citation in format AMSBIB
\Bibitem{MinKoj04}
\by G.~Mints, A.~A.~Kojevnikov
\paper Intuitionistic frege systems are polynomially equivalent
\inbook Computational complexity theory. Part~IX
\serial Zap. Nauchn. Sem. POMI
\yr 2004
\vol 316
\pages 129--146
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl729}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2113061}
\zmath{https://zbmath.org/?q=an:1095.03062}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 134
\issue 5
\pages 2392--2402
\crossref{https://doi.org/10.1007/s10958-006-0116-8}
Linking options:
  • https://www.mathnet.ru/eng/znsl729
  • https://www.mathnet.ru/eng/znsl/v316/p129
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :83
    References:94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024