Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 517, Pages 106–124 (Mi znsl7283)  

Skew Howe duality and $q$-Krawtchouk polynomial ensemble

A. Nazarova, P. Nikitinb, D. Sarafannikovc

a St. Petersburg State University, Ulyanovskaya 1, 198504 St. Petersburg, Russia
b St. Petersburg Department of Steklov Mathematical Institute RAS, Fontanka 27, St. Petersburg, Russia
c St. Petersburg State University, 29 Line 14th VI, 199178 Saint Petersburg, Russia
References:
Abstract: We consider the decomposition into irreducible components of the exterior algebra $\bigwedge\left(\mathbb{C}^{n}\otimes \left(\mathbb{C}^{k}\right)^{*}\right)$ regarded as a $GL_{n}\times GL_{k}$ module. Irreducible $GL_{n}\times GL_{k}$ representations are parameterized by pairs of Young diagrams $(\lambda,\bar{\lambda}')$, where $\bar{\lambda}'$ is the complement conjugate diagram to $\lambda$ inside the $n\times k$ rectangle. We set the probability of a diagram as a normalized specialization of the character for the corresponding irreducible component. For the principal specialization we get the probability that is equal to the ratio of the $q$-dimension for the irreducible component over the $q$-dimension of the exterior algebra. We demonstrate that this probability distribution can be described by the $q$-Krawtchouk polynomial ensemble. We derive the limit shape and prove the central limit theorem for the fluctuations in the limit when $n,k$ tend to infinity and $q$ tends to one at comparable rates.
Key words and phrases: limit shape, Young diagrams, $q$-Krawtchouk polynomials, skew Howe duality, determinantal ensemble, $q$-dimension, orthogonal polynomials.
Funding agency Grant number
Russian Science Foundation 21-11-00141
This work is supported by the Russian Science Foundation under grant No. 21-11-00141.
Received: 01.09.2022
Document Type: Article
UDC: 517-986
Language: English
Citation: A. Nazarov, P. Nikitin, D. Sarafannikov, “Skew Howe duality and $q$-Krawtchouk polynomial ensemble”, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Zap. Nauchn. Sem. POMI, 517, POMI, St. Petersburg, 2022, 106–124
Citation in format AMSBIB
\Bibitem{NazNikSar22}
\by A.~Nazarov, P.~Nikitin, D.~Sarafannikov
\paper Skew Howe duality and $q$-Krawtchouk polynomial ensemble
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 517
\pages 106--124
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7283}
Linking options:
  • https://www.mathnet.ru/eng/znsl7283
  • https://www.mathnet.ru/eng/znsl/v517/p106
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:71
    Full-text PDF :21
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024