Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 517, Pages 82–105 (Mi znsl7282)  

The complementarity principle and complementary observables in constructive quantum mechanics

V. V. Kornyak

Joint Institute for Nuclear Research, Laboratory of Information Technologies
References:
Abstract: The mathematical formulation of Bohr's complementarity principle \break leads to the concepts of mutually unbiased bases in Hilbert spaces and complementary quantum observables. We consider the algebraic structures associated with these concepts and their applications to constructive quantum mechanics. Computer-algebraic approaches to the problems under consideration are briefly discussed.
Key words and phrases: complementarity principle, Weyl's canonical commutation relation, complementary observables, mutually unbiased bases, finite quantum mechanics, quantum mereology.
Received: 25.09.2022
Document Type: Article
UDC: 512.547.2, 530.145.1
Language: Russian
Citation: V. V. Kornyak, “The complementarity principle and complementary observables in constructive quantum mechanics”, Representation theory, dynamical systems, combinatorial methods. Part XXXIV, Zap. Nauchn. Sem. POMI, 517, POMI, St. Petersburg, 2022, 82–105
Citation in format AMSBIB
\Bibitem{Kor22}
\by V.~V.~Kornyak
\paper The complementarity principle and complementary observables in constructive quantum mechanics
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXXIV
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 517
\pages 82--105
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7282}
Linking options:
  • https://www.mathnet.ru/eng/znsl7282
  • https://www.mathnet.ru/eng/znsl/v517/p82
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :20
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024