Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 516, Pages 135–175 (Mi znsl7272)  

This article is cited in 1 scientific paper (total in 1 paper)

Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap

A. A. Mishulovich

Saint Petersburg State University
Full-text PDF (405 kB) Citations (1)
References:
Abstract: In $ L_2(\mathbb{R}^d) $, we consider a second-order elliptic differential operator $A_{\varepsilon} = \mathbf{D}^* g(\mathbf{x}/\varepsilon) \mathbf{D} + \varepsilon^{-2}p(\mathbf{x}/\varepsilon),$ $ \varepsilon > 0 $, with periodic coefficients. For small $ \varepsilon $, we study the behavior of the semigroup $ e^{-A_{\varepsilon}t} $, $ t > 0 $, cut by the spectral projection of the operator $ A_{\varepsilon} $ for the interval $ [\varepsilon^{-2}\lambda_{+}, +\infty) $. Here $ \varepsilon^{-2}\lambda_{+} $ is the right edge of a spectral gap for the operator $ A_{\varepsilon} $. We obtain approximation for the 'cut semigroup' in the operator norm in $L_2(\mathbb{R}^d)$ with error $O(\varepsilon)$, and also a more accurate approximation with error $O(\varepsilon^2)$ (after singling out the factor $e^{-t \lambda_{+} / \varepsilon^2}$). The results are applied to homogenization of the Cauchy problem $\partial_t v_\varepsilon = - A_\varepsilon v_\varepsilon$, $v_\varepsilon\vert_{t=0} = f_\varepsilon$, with the initial data $f_\varepsilon$ from a special class.
Key words and phrases: Periodic differential operators, spectral gap, parabolic equation, homogenization, operator error estimates.
Funding agency Grant number
Russian Science Foundation 22-11-00092
Received: 31.10.2022
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. A. Mishulovich, “Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap”, Mathematical problems in the theory of wave propagation. Part 52, Zap. Nauchn. Sem. POMI, 516, POMI, St. Petersburg, 2022, 135–175
Citation in format AMSBIB
\Bibitem{Mis22}
\by A.~A.~Mishulovich
\paper Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap
\inbook Mathematical problems in the theory of wave propagation. Part~52
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 516
\pages 135--175
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4521406}
Linking options:
  • https://www.mathnet.ru/eng/znsl7272
  • https://www.mathnet.ru/eng/znsl/v516/p135
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :32
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024