|
Zapiski Nauchnykh Seminarov POMI, 2022, Volume 516, Pages 135–175
(Mi znsl7272)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap
A. A. Mishulovich Saint Petersburg State University
Abstract:
In $ L_2(\mathbb{R}^d) $, we consider a second-order elliptic differential operator $A_{\varepsilon} = \mathbf{D}^* g(\mathbf{x}/\varepsilon) \mathbf{D} + \varepsilon^{-2}p(\mathbf{x}/\varepsilon),$ $ \varepsilon > 0 $, with periodic coefficients. For small $ \varepsilon $, we study the behavior of the semigroup $ e^{-A_{\varepsilon}t} $, $ t > 0 $, cut by the spectral projection of the operator $ A_{\varepsilon} $ for the interval $ [\varepsilon^{-2}\lambda_{+}, +\infty) $. Here $ \varepsilon^{-2}\lambda_{+} $ is the right edge of a spectral gap for the operator $ A_{\varepsilon} $. We obtain approximation for the 'cut semigroup' in the operator norm in $L_2(\mathbb{R}^d)$ with error $O(\varepsilon)$, and also a more accurate approximation with error $O(\varepsilon^2)$ (after singling out the factor $e^{-t \lambda_{+} / \varepsilon^2}$). The results are applied to homogenization of the Cauchy problem $\partial_t v_\varepsilon = - A_\varepsilon v_\varepsilon$, $v_\varepsilon\vert_{t=0} = f_\varepsilon$, with the initial data $f_\varepsilon$ from a special class.
Key words and phrases:
Periodic differential operators, spectral gap, parabolic equation, homogenization, operator error estimates.
Received: 31.10.2022
Citation:
A. A. Mishulovich, “Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap”, Mathematical problems in the theory of wave propagation. Part 52, Zap. Nauchn. Sem. POMI, 516, POMI, St. Petersburg, 2022, 135–175
Linking options:
https://www.mathnet.ru/eng/znsl7272 https://www.mathnet.ru/eng/znsl/v516/p135
|
Statistics & downloads: |
Abstract page: | 68 | Full-text PDF : | 32 | References: | 22 |
|