Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 516, Pages 20–39 (Mi znsl7267)  

Sturm-Liouville operators with $W^{-1,1}$-matrix potentials

Ya. I. Granovskiya, M. M. Malamudb

a Donetsk National Technical University
b Peoples' Friendship University of Russia, Moscow
References:
Abstract: In the present work the spectral structure of realizations of a matrix three-term Sturm-Liouville operator
\begin{equation*} \mathcal{L}(P,Q,R)y:=R^{-1}(x)\bigl(-(P(x)y')'+Q(x)y\bigr), y=(y_1,\ldots,y_m)^{\top}, \end{equation*}
with singular potential $Q( \cdot ) = Q( \cdot )^*$ on the half-line and line is investigated. It is shown that under certain conditions on the coefficients $P( \cdot )$ and $R( \cdot )$ the Dirichlet realization $L^D$ (and other self-adjoint realizations) in the case of $Q( \cdot )\in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$ has Lebesgue non-negative spectrum of constant multiplicity $m$. In particular, Schrödinger operator with matrix potential $Q( \cdot )\in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$ has Lebesgue non-negative spectrum of constant multiplicity $m$. This result is applied to the Sturm–Liouville expression $\mathcal{L}(P,Q,R)$ with delta-interactions on the line $\mathbb{R}$. It is shown that if the minimal operator $L := L_{\min }$ in $L^2(\mathbb{R};R;\mathbb{C}^m)$ is self-adjoint, then the non-negative spectrum of the operator $L$ is Lebesgue of constant multiplicity $2m$ whenever $Q( \cdot )\mathbf{1}_{\mathbb{R}_+}(\cdot) \in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$. In particular, if the minimal Schrödinger operator $\mathbf{H}$ on the line with potential matrix $Q( \cdot )=Q_1( \cdot )+\sum\limits_{k\in\mathbb{Z}}\alpha_k\delta( \cdot -x_k)$, is selfadjoint, $\mathbf{H} = \mathbf{H}^*$, then its non-negative spectrum is Lebesgue one of constant multiplicity $2m$ whenever $Q_1( \cdot )\mathbf{1}_{\mathbb{R}_+}\in L^1(\mathbb{R}_+;\mathbb{C}^{m\times m})$ and $\sum\limits_{k=1}^{\infty}|\alpha_k|<\infty$.
Key words and phrases: Schrödinger operators, singular potentials, regularization, delta-interactions, boundary triplets, Weyl functions, absolutely continuous spectrum.
Funding agency Grant number
Russian Science Foundation 20-61-46016
Received: 26.10.2022
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: Ya. I. Granovskiy, M. M. Malamud, “Sturm-Liouville operators with $W^{-1,1}$-matrix potentials”, Mathematical problems in the theory of wave propagation. Part 52, Zap. Nauchn. Sem. POMI, 516, POMI, St. Petersburg, 2022, 20–39
Citation in format AMSBIB
\Bibitem{GraMal22}
\by Ya.~I.~Granovskiy, M.~M.~Malamud
\paper Sturm-Liouville operators with $W^{-1,1}$-matrix potentials
\inbook Mathematical problems in the theory of wave propagation. Part~52
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 516
\pages 20--39
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4521401}
Linking options:
  • https://www.mathnet.ru/eng/znsl7267
  • https://www.mathnet.ru/eng/znsl/v516/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:65
    Full-text PDF :18
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024