Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 515, Pages 199–213 (Mi znsl7264)  

Sums of independent random variables and the generalized Dickman laws

K. A. Tregubovaa, A. A. Khartovab

a Smolensk State University
b St. Petersburg National Research University of Information Technologies, Mechanics and Optics
References:
Abstract: The probabilistic Dickman law, defined by the known Dickman function, and its generalized versions are considered. In the paper, we obtain a general criterion of the weak convergence to these laws for the distributions of sums of independent non-negative random variables within the series scheme in the classical setting. Moreover, we get a special criterion of the convergence for the case when the summing random variables have finite expectations.
Key words and phrases: sums of independent random variables, the series scheme, limit theorems, the Dickman distribution.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-12004_ННИО_а
Received: 19.10.2022
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: K. A. Tregubova, A. A. Khartov, “Sums of independent random variables and the generalized Dickman laws”, Probability and statistics. Part 33, Zap. Nauchn. Sem. POMI, 515, POMI, St. Petersburg, 2022, 199–213
Citation in format AMSBIB
\Bibitem{TreKha22}
\by K.~A.~Tregubova, A.~A.~Khartov
\paper Sums of independent random variables and the generalized Dickman laws
\inbook Probability and statistics. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 515
\pages 199--213
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7264}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527622}
Linking options:
  • https://www.mathnet.ru/eng/znsl7264
  • https://www.mathnet.ru/eng/znsl/v515/p199
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :67
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024