Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 515, Pages 39–71 (Mi znsl7254)  

Stochastic model of the Cauchy–Robin problem for systems of nonlinear parabolic equations

Ya. I. Belopolskayaab

a University of Science and Technology "Sirius", Sochi
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We derive stochastic equations to describe reflected diffusion processes associated with the Cauchy–Neumann problem for systems of nonlinear parabolic equations in non-divergent form. The construction of a solution to the arized stochastic problem is based on a localization procedure that allows to reduce the problem in a closed domain to the corresponding problem in the half space. As a result we obtain a probabilistic representation of a weak solution to the Cauchy–Neumann problem in a bounded domain with a smooth boundary.
Key words and phrases: stochastic models, reflected diffusion, Skorokhod's problem, weak solutions of the Cauchy-Robin problem.
Funding agency Grant number
Russian Science Foundation 22-21-00016
Received: 26.09.2022
Document Type: Article
UDC: 519.2
Language: Russian
Citation: Ya. I. Belopolskaya, “Stochastic model of the Cauchy–Robin problem for systems of nonlinear parabolic equations”, Probability and statistics. Part 33, Zap. Nauchn. Sem. POMI, 515, POMI, St. Petersburg, 2022, 39–71
Citation in format AMSBIB
\Bibitem{Bel22}
\by Ya.~I.~Belopolskaya
\paper Stochastic model of the Cauchy--Robin problem for systems of nonlinear parabolic equations
\inbook Probability and statistics. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 515
\pages 39--71
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7254}
Linking options:
  • https://www.mathnet.ru/eng/znsl7254
  • https://www.mathnet.ru/eng/znsl/v515/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:77
    Full-text PDF :28
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024