Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 515, Pages 19–29 (Mi znsl7252)  

This article is cited in 1 scientific paper (total in 1 paper)

On power-sum kernels on symmetric groups

I. Azangulova, V. A. Borovitskiyb, A. V. Smolenskya

a Saint Petersburg State University
b Eidgenösische Technische Hochschule Zürich
Full-text PDF (216 kB) Citations (1)
References:
Abstract: In this note, we introduce a family of “power-sum” covariance functions and the corresponding Gaussian processes on symmetric groups $S_n$. Such processes are bi-invariant: the action of $S_n$ on itself from both sides does not change their finite-dimensional distributions. We show that the values of power-sum covariance functions can be efficiently calculated, and we also propose a method enabling approximate modeling of the corresponding processes with polynomial computational complexity. By doing this we provide the tools that are required to use the introduced family of processes for statistical modeling.
Key words and phrases: Gaussian processes, symmetric group, positive definite, covariance, sampling.
Funding agency Grant number
Russian Science Foundation 21-11-00047
Received: 16.10.2022
Document Type: Article
UDC: 519.2
Language: Russian
Citation: I. Azangulov, V. A. Borovitskiy, A. V. Smolensky, “On power-sum kernels on symmetric groups”, Probability and statistics. Part 33, Zap. Nauchn. Sem. POMI, 515, POMI, St. Petersburg, 2022, 19–29
Citation in format AMSBIB
\Bibitem{AzaBorSmo22}
\by I.~Azangulov, V.~A.~Borovitskiy, A.~V.~Smolensky
\paper On power-sum kernels on symmetric groups
\inbook Probability and statistics. Part~33
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 515
\pages 19--29
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7252}
Linking options:
  • https://www.mathnet.ru/eng/znsl7252
  • https://www.mathnet.ru/eng/znsl/v515/p19
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :74
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024